Roles of Endoplasmic Reticulum Stress and Unfolded Protein Response Associated Genes in Seed Stratification and Bud Endodormancy during Chilling Accumulation in Prunus persica
نویسندگان
چکیده
Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.
منابع مشابه
Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment
The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recent...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملThe effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis.
BACKGROUND AND AIMS Accumulation of unfolded proteins caused by inefficient chaperone activity in the endoplasmic reticulum (ER) is termed 'ER stress', and it is perceived by a complex gene network. Induction of these genes triggers a response termed the 'unfolded protein response' (UPR). If a cell cannot overcome the accumulation of unfolded proteins, the ER-associated degradation (ERAD) syste...
متن کاملPART OF A SPECIAL ISSUE ON REACTIVE OXYGEN AND NITROGEN SPECIES The effects of induced production of reactive oxygen species in organelles on endoplasmic reticulum stress and on the unfolded protein response in arabidopsis
Background and Aims Accumulation of unfolded proteins caused by inefficient chaperone activity in the endoplasmic reticulum (ER) is termed ‘ER stress’, and it is perceived by a complex gene network. Induction of these genes triggers a response termed the ‘unfolded protein response’ (UPR). If a cell cannot overcome the accumulation of unfolded proteins, the ER-associated degradation (ERAD) syste...
متن کاملDormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns
Mapping and sequencing of the non-dormant evg mutant in peach [Prunus persica (L.) Batsch] identified six tandem-arrayed DAM (dormancy-associated MADS-box) genes as candidates for regulating growth cessation and terminal bud formation. To narrow the list of candidate genes, an attempt was made to associate bud phenology with the seasonal and environmental patterns of expression of the candidate...
متن کامل